Dynamical Polynomials (noch nicht übersetzt)
Problem 812
A dynamical polynomial is a monicleading coefficient is 1 polynomial $f(x)$ with integer coefficients such that $f(x)$ divides $f(x^2-2)$.
For example, $f(x) = x^2 - x - 2$ is a dynamical polynomial because $f(x^2-2) = x^4-5x^2+4 = (x^2 + x -2)f(x)$.
Let $S(n)$ be the number of dynamical polynomials of degree $n$.
For example, $S(2)=6$, as there are six dynamical polynomials of degree 2:
Also, $S(5)=58$ and $S(20)=122087$.
Find $S(10\,000)$. Give your answer modulo $998244353$.