Bitwise Recursion (noch nicht übersetzt)
Problem 811
Let $b(n)$ be the largest power of 2 that divides $n$. For example $b(24) = 8$.
Define the recursive function: \begin{align*} \begin{split} A(0) &= 1\\ A(2n) &= 3A(n) + 5A\big(2n - b(n)\big) \qquad n \gt 0\\ A(2n+1) &= A(n) \end{split} \end{align*} and let $H(t,r) = A\big((2^t+1)^r\big)$.
You are given $H(3,2) = A(81) = 636056$.
Find $H(10^{14}+31,62)$. Give your answer modulo $1\,000\,062\,031$.