Triffle Numbers (noch nicht übersetzt)
Problem 699
Let σ(n) be the sum of all the divisors of the positive integer n, for example:
σ(10)=1+2+5+10=18.
Define T(N) to be the sum of all numbers n≤N such that when the fraction σ(n)n is written in its lowest form ab, the denominator is a power of 3 i.e. b=3k,k>0.
You are given T(100)=270 and T(106)=26089287.
Find T(1014).