Incomplete words II (noch nicht übersetzt)
Problem 658
In the context of formal languages, any finite sequence of letters of a given alphabet Σ is called a word over Σ. We call a word incomplete if it does not contain every letter of Σ.
For example, using the alphabet Σ={a,b,c}, 'ab', 'abab' and '' (the empty word) are incomplete words over Σ, while 'abac' is a complete word over Σ.
Given an alphabet Σ of α letters, we define I(α,n) to be the number of incomplete words over Σ with a length not exceeding n.
For example, I(3,0)=1, I(3,2)=13 and I(3,4)=79.
Let S(k,n)=k∑α=1I(α,n).
For example, S(4,4)=406, S(8,8)=27902680 and S(10,100)≡983602076 mod 1000000007.
Find S(107,1012). Give your answer modulo 1000000007.