Diophantine reciprocals III (noch nicht übersetzt)
Problem 454
In the following equation x, y, and n are positive integers.
$$\dfrac{1}{x} + \dfrac{1}{y} = \dfrac{1}{n}$$For a limit L we define F(L) as the number of solutions which satisfy x < y ≤ L.
We can verify that F(15) = 4 and F(1000) = 1069.
Find F(1012).