(noch nicht übersetzt)

Problem 915

The function $s(n)$ is defined recursively for positive integers by $s(1) = 1$ and $s(n+1) = \big(s(n) - 1\big)^3 +2$ for $n\geq 1$.
The sequence begins: $s(1) = 1, s(2) = 2, s(3) = 3, s(4) = 10, \ldots$.

For positive integers $N$, define $$T(N) = \sum_{a=1}^N \sum_{b=1}^N \gcd\Big(s\big(s(a)\big), s\big(s(b)\big)\Big).$$ You are given $T(3) = 12$, $T(4) \equiv 24881925$ and $T(100)\equiv 14416749$ both modulo $123456789$.

Find $T(10^8)$. Give your answer modulo $123456789$.