(noch nicht übersetzt)
Problem 903
A permutation π of {1,…,n} can be represented in one-line notation as π(1),…,π(n). If all n! permutations are written in lexicographic order then rank(π) is the position of π in this 1-based list.
For example, rank(2,1,3)=3 because the six permutations of {1,2,3} in lexicographic order are: 1,2,31,3,22,1,32,3,13,1,23,2,1
Let Q(n) be the sum ∑π∑n!i=1rank(πi), where π ranges over all permutations of {1,…,n}.
For example, Q(2)=5, Q(3)=88, Q(6)=133103808 and Q(10)≡468421536(mod109+7).
Find Q(106). Give your answer modulo (109+7).