Rational Blancmange (noch nicht übersetzt)

Problem 889

Recall the blancmange function from Problem 226: T(x)=n=0s(2nx)2n, where s(x) is the distance from x to the nearest integer.

For positive integers k,t,r, we write F(k,t,r)=(22k1)T((2t+1)r2k+1). It can be shown that F(k,t,r) is always an integer.
For example, F(3,1,1)=42, F(13,3,3)=23093880 and F(103,13,6)878922518(mod1000062031).

Find F(1018+31,1014+31,62). Give your answer modulo 1000062031.