Sorted Digits (noch nicht übersetzt)
Problem 885
For a positive integer $d$, let $f(d)$ be the number created by sorting the digits of $d$ in ascending order, removing any zeros. For example, $f(3403) = 334$.
Let $S(n)$ be the sum of $f(d)$ for all positive integers $d$ of $n$ digits or less. You are given $S(1) = 45$ and $S(5) = 1543545675$.
Find $S(18)$. Give your answer modulo $1123455689$.