Sum of Products (noch nicht übersetzt)
Problem 840
A partition of $n$ is a set of positive integers for which the sum equals $n$.
The partitions of 5 are:
$\{5\},\{1,4\},\{2,3\},\{1,1,3\},\{1,2,2\},\{1,1,1,2\}$ and $\{1,1,1,1,1\}$.
Further we define the function $D(p)$ as:
$$
\begin{align}
\begin{split}
D(1) &= 1 \\
D(p) &= 1, \text{ for any prime } p \\
D(pq) &= D(p)q + pD(q), \text{ for any positive integers } p,q >1.
\end{split}
\end{align}
$$
Now let $\{a_1, a_2,\ldots,a_k\}$ be a partition of $n$.
We assign to this particular partition the value:
$$P=\prod_{j=1}^{k}D(a_j). $$
$G(n)$ is the sum of $P$ for all partitions of $n$.
We can verify that $G(10) = 164$.
Find $S(5\times 10^4) \mod 999676999$.