Distinct Rows and Columns (noch nicht übersetzt)
The complexity of an $n\times n$ binary matrix is the number of distinct rows and columns.
For example, consider the $3\times 3$ matrices $$ \mathbf{A} = \begin{pmatrix} 1&0&1\\0&0&0\\1&0&1\end{pmatrix} \quad \mathbf{B} = \begin{pmatrix} 0&0&0\\0&0&0\\1&1&1\end{pmatrix} $$ $\mathbf{A}$ has complexity 2 because the set of rows and columns is $\{000,101\}$. $\mathbf{B}$ has complexity 3 because the set of rows and columns is $\{000,001,111\}$.
For $0 \le k \le n^2$, let $c(n, k)$ be the minimum complexity of an $n\times n$ binary matrix with exactly $k$ ones.
Let
$$C(n) = \sum_{k=0}^{n^2} c(n, k)$$
For example, $C(2) = c(2, 0) + c(2, 1) + c(2, 2) + c(2, 3) + c(2, 4) = 1 + 2 + 2 + 2 + 1 = 8$.
You are given $C(5) = 64$, $C(10) = 274$ and $C(20) = 1150$.
Find $C(10^4)$.