Slowly converging series (noch nicht übersetzt)
Problem 722
For a non-negative integer k, define Ek(q)=∞∑n=1σk(n)qn
where σk(n)=∑d∣ndk is the sum of the k-th powers of the positive divisors of n.
It can be shown that, for every k, the series Ek(q) converges for any 0<q<1.
For example,
E1(1−124)=3.872155809243e2
E3(1−128)=2.767385314772e10
E7(1−1215)=6.725803486744e39
All the above values are given in scientific notation rounded to twelve digits after the decimal point.
Find the value of E15(1−1225).
Give the answer in scientific notation rounded to twelve digits after the decimal point.