Summation of a Modular Formula (noch nicht übersetzt)
Problem 717
For an odd prime p, define f(p)=⌊2(2p)p⌋mod2p
For example, when p=3, ⌊28/3⌋=85≡5(mod8) and so f(3)=5.
Further define g(p)=f(p)modp. You are given g(31)=17.
Now define G(N) to be the summation of g(p) for all odd primes less than N.
You are given G(100)=474 and G(104)=2819236.
Find G(107)