Maximal Area (noch nicht übersetzt)
Problem 681
Given positive integers a≤b≤c≤d, it may be possible to form quadrilaterals with edge lengths a,b,c,d (in any order). When this is the case, let M(a,b,c,d) denote the maximal area of such a quadrilateral.
For example, M(2,2,3,3)=6, attained e.g. by a 2×3 rectangle.
Let SP(n) be the sum of a+b+c+d over all choices a≤b≤c≤d for which M(a,b,c,d) is a positive integer not exceeding n.
SP(10)=186 and SP(100)=23238.
Find SP(1000000).