Maximal Area (noch nicht übersetzt)

Problem 681

Given positive integers abcd, it may be possible to form quadrilaterals with edge lengths a,b,c,d (in any order). When this is the case, let M(a,b,c,d) denote the maximal area of such a quadrilateral.
For example, M(2,2,3,3)=6, attained e.g. by a 2×3 rectangle.

Let SP(n) be the sum of a+b+c+d over all choices abcd for which M(a,b,c,d) is a positive integer not exceeding n.
SP(10)=186 and SP(100)=23238.

Find SP(1000000).