Sums of subarrays (noch nicht übersetzt)
Let tk be the tribonacci numbers defined as:
t0=t1=0;
t2=1;
tk=tk−1+tk−2+tk−3 for k≥3.
For a given integer n, let An be an array of length n (indexed from 0 to n−1), that is initially filled with zeros.
The array is changed iteratively by replacing An[(t2i−2 mod n)] with An[(t2i−2 mod n)]+2(t2i−1 mod n)−n+1 in each step i.
After each step i, define Mn(i) to be max{q∑j=pAn[j]:0≤p≤q<n}, the maximal sum of any contiguous subarray of An.
The first 6 steps for n=5 are illustrated below:
Initial state: A5={0,0,0,0,0}
Step 1: ⇒A5={−4,0,0,0,0} , M5(1)=0
Step 2: ⇒A5={−4,−2,0,0,0} , M5(2)=0
Step 3: ⇒A5={−4,−2,4,0,0} , M5(3)=4
Step 4: ⇒A5={−4,−2,6,0,0} , M5(4)=6
Step 5: ⇒A5={−4,−2,6,0,4} , M5(5)=10
Step 6: ⇒A5={−4,2,6,0,4} , M5(6)=12
Let S(n,l)=l∑i=1Mn(i). Thus S(5,6)=32.
You are given S(5,100)=2416, S(14,100)=3881 and S(107,1000)=1618572.
Find S(10000003,10200000)−S(10000003,10000000).