Counting hexagons (noch nicht übersetzt)
Problem 577
An equilateral triangle with integer side length $n \ge 3$ is divided into $n^2$ equilateral triangles with side length 1 as shown in the diagram below.
The vertices of these triangles constitute a triangular lattice with $\frac{(n+1)(n+2)} 2$ lattice points.
Let $H(n)$ be the number of all regular hexagons that can be found by connecting 6 of these points.
For example, $H(3)=1$, $H(6)=12$ and $H(20)=966$.
Find $\displaystyle \sum_{n=3}^{12345} H(n)$.