Euler's Number (noch nicht übersetzt)
Problem 330
An infinite sequence of real numbers a(n) is defined for all integers n as follows:
a(n)={1n<0∞∑i=1a(n−i)i!n≥0
For example,
a(0)=11!+12!+13!+⋯=e−1
a(1)=e−11!+12!+13!+⋯=2e−3
a(2)=2e−31!+e−12!+13!+⋯=72e−6
with e=2.7182818... being Euler's constant.
It can be shown that a(n) is of the form A(n)e+B(n)n! for integers A(n) and B(n).
For example, a(10)=328161643e−65269448610!.
Find A(109)+B(109) and give your answer mod 77 777 777.