Euler's Number (noch nicht übersetzt)

Problem 330
An infinite sequence of real numbers a(n) is defined for all integers n as follows: a(n)={1n<0i=1a(ni)i!n0

For example,

a(0)=11!+12!+13!+=e1
a(1)=e11!+12!+13!+=2e3
a(2)=2e31!+e12!+13!+=72e6

with e=2.7182818... being Euler's constant.

It can be shown that a(n) is of the form A(n)e+B(n)n! for integers A(n) and B(n).

For example, a(10)=328161643e65269448610!.

Find A(109)+B(109) and give your answer mod 77 777 777.