Modulo Summations (noch nicht übersetzt)
Problem 326
Let an be a sequence recursively defined by:a1=1,an=(n−1∑k=1k⋅ak)modn.
So the first 10 elements of an are: 1,1,0,3,0,3,5,4,1,9.
Let f(N,M) represent the number of pairs (p,q) such that:
1≤p≤q≤Nand(q∑i=pai)modM=0
It can be seen that f(10,10)=4 with the pairs (3,3), (5,5), (7,9) and (9,10).
You are also given that f(104,103)=97158.
Find f(1012,106).