2011 nines (noch nicht übersetzt)
Consider the real number √2+√3.
When we calculate the even powers of √2+√3
we get:
(√2+√3)2=9.898979485566356…
(√2+√3)4=97.98979485566356…
(√2+√3)6=969.998969071069263…
(√2+√3)8=9601.99989585502907…
(√2+√3)10=95049.999989479221…
(√2+√3)12=940897.9999989371855…
(√2+√3)14=9313929.99999989263…
(√2+√3)16=92198401.99999998915…
It looks as if the number of consecutive nines at the beginning of the fractional part of these powers is non-decreasing.
In fact it can be proven that the fractional part of (√2+√3)2n approaches 1 for large n.
Consider all real numbers of the form √p+√q with p and q positive integers and p<q, such that the fractional part of (√p+√q)2n approaches 1 for large n.
Let C(p,q,n) be the number of consecutive nines at the beginning of the fractional part of (√p+√q)2n.
Let N(p,q) be the minimal value of n such that C(p,q,n)≥2011.
Find ∑N(p,q) for p+q≤2011.