Fibonacci golden nuggets (noch nicht übersetzt)

Problem 137

Consider the infinite polynomial series $A_F(x) = x F_1 + x^2 F_2 + x^3 F_3 + \dots$, where $F_k$ is the $k$th term in the Fibonacci sequence: $1, 1, 2, 3, 5, 8, \dots$; that is, $F_k = F_{k-1} + F_{k-2}$, $F_1 = 1$ and $F_2 = 1$.

For this problem we shall be interested in values of $x$ for which $A_F(x)$ is a positive integer.

Surprisingly $\begin{align*} A_F(\tfrac{1}{2}) &= (\tfrac{1}{2})\times 1 + (\tfrac{1}{2})^2\times 1 + (\tfrac{1}{2})^3\times 2 + (\tfrac{1}{2})^4\times 3 + (\tfrac{1}{2})^5\times 5 + \cdots \\ &= \tfrac{1}{2} + \tfrac{1}{4} + \tfrac{2}{8} + \tfrac{3}{16} + \tfrac{5}{32} + \cdots \\ &= 2 \end{align*}$

The corresponding values of x for the first five natural numbers are shown below.

$x$ $A_F(x)$
$\sqrt{2}-1$ 1
$\tfrac{1}{2}$ 2
$\frac{\sqrt{13}-2}{3}$ 3
$\frac{\sqrt{89}-5}{8}$ 4
$\frac{\sqrt{34}-3}{5}$ 5

We shall call $A_F(x)$ a golden nugget if $x$ is rational, because they become increasingly rarer; for example, the 10th golden nugget is 74049690.

Find the 15th golden nugget.